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The linearized stability of plane Couette flow is investigated here, without using 
the Orr-Sommerfeld equation. Rather, an unusual symmetry of the problem is 
exploited to obtain a complete set of modes for perturbations of the unbounded 
(no walls) flow. An explicit Green’s function is constructed from these modes. 
The unbounded flow is shown to be rigorously stable. The bounded case (with 
walls) is investigated by using a ‘method of images’ with the unbounded Green’s 
function; the stability problem in this form reduces to an algebraic characteristic 
equation (not a differential-equation eigenvalue problem), involving transcen- 
dental functions defined by integral representations. 

1. Introduction 
There is not much doubt that viscous plane Couette flow is always stable to 

small disturbances, ones which satisfy the linear Orr-Sommerfeld perturbation 
equation. Nevertheless, no direct proof of stability is known. The evidence comes 
instead from asymptotic and numerical work which must be pieced together with 
some delicacy, as in Davey (1973). The sticking point of fully analytic investiga- 
tions (Wasow 1953; Grohne 1954; Joseph 1968, and others) is the variety of 
different asymptotic regimes in the a (wavenumber of disturbance), R (Reynolds 
number) plane. Numerical investigations (Gallagher & Mercer 1962, 1964; 
Deardorff 1963, and others) have faced the unfortunate sensitivity of the Orr- 
Sommerfeld equation a t  high Reynolds number to various sorts of truncation 
error [as Orszag (1971) and Hughes (1972) have elaborated in different contexts]. 

Since the Orr-Sommerfeld equation is so uncooperative, it  would seem reason- 
able to investigate how far one can proceed without it. This is the point of view that 
we take in this paper, and the answer that we find is: surprisingly far. Exploiting 
the symmetries of the background flow in a way that the Orr-Sommerfeld equa- 
tion does not, we are able to obtain a complete set of modes for perturbations of 
unbounded plane Couette flow, where the walls are removed to infinity ($2). 
These modes are superposed in $ 3  to get an explicit Green’s function for the 
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space and time disturbances of an initial disturbance, and we show that in this 
unbounded case the flow is rigorously stable to linear disturbances at all wave- 
numbers. Returning to the wall-bounded case in $4, we impose boundary con- 
ditions on our Green’s functions by something like a ‘method of images’, and we 
thereby obtain an algebraic transcendental equation for the complex eigen- 
frequencies of unstable modes. This algebraic equation thus contains the same 
stability information as does the differential-equation eigenvalue problem which 
comes from the Orr-Sommerfeld equation, which has thus been entirely circum- 
vented. The functions which appear in our algebraic equation are rather com- 
plicated Laplace transforms of functions of complementary error functions, from 
which the supposed stability of the system is not immediately apparent. The 
equation does, however, elucidate the physical nature of an instability should one 
be present. 

The symmetry which leads to the vorticity solution of equation (10) below was 
first recognized by Lord Kelvin (Thomson 1887) some two decades before Orr’s 
(1907) classic work. Kelvin purported to use (10) to prove that plane Couette 
flow is stable. In  fact, the proof contains flaws; Orr correctly recognized these, 
and offered his own method, since become standard, as a way of circumventing 
the Kelvin analysis. This paper, by contrast, picks up Kelvin’s cold trail and 
proceeds further with it?. (We shall note Kelvin’s errors below.) 

2. Perturbation modes for unbounded flow 

velocity profile 

where (T is any constant. Adopting standard techniques for two-dimensional 
flow of an incompressible viscous fluid (Lin 1945, 1955), we let 

so that 

When there are no bounding walls, the unperturbed flow V, is taken to have a 

%z= a!/, qu= 0, ( 1 )  

v, = a v x ,  g, t)/ag, v, = - a v x ,  g, qp., (2) 

(3) w = (V x V), = -v2yP, 

where w is the vorticity and Y is the stream function. The vorticity Navier- 
Stokes equation (e.g. Townsend 1956, chap. I )  is 

(VZY),, +Y,y (v2Y),z - Y,, (v2Y),y = VV4T, (4) 

where Y is the kinematic viscosity. 
Now setting Y = Y,+Yl (where Yo is the background flow and Yl a small 

perturbation) and linearizing, we obtain from (1)-(4) the equation for w1 

15) 

Because t and x do not appear explicitly in ( 5 ) ,  Lin (1955, p. 28) and others 

Y, = #(y) exp (iEx - iw t ) ,  

t We became aware of this trail only after our work had been completed, and we thank 

(= -V2Y1): wl, t + ago,, 2: - vV2w1 = 0. 

back to Orr and Sommerfeld chose to separate variables by 

C. C. Lin for directing us to the historical literature. 
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which implies 
w1 = - (4“ - k2$) exp ( ikx  - iwt) 

( k a y  - W )  (4‘’ - k2$) = - i ~ ( @ ~  - 2k24” + k4$), 

( 6 b )  

(where a prime denotes dldy),  and obtained 

(7) 

which is the Orr-Sommerfeld equation for this flow. That this separation exists 
is a direct consequence of the translational symmetries of the background flow in 
the x and t co-ordinates. However, there is also a symmetry associated with the y 
direction: a combination of y translation and an x-velocity boost to a moving 
frame, or (equivalently) a pure y L  translation in the Lagrangian co-ordinates 

y L  = y ,  XL = x- yat.  (8) 

So an alternative ansatz to (6) is the separation of variables 

w1 (x, y ,  t )  = g(t)  exp (ikx, + iIyL) = g(t) exp [ikx +i(Z - akt)  y ] .  (9) 

Substitution into ( 5 )  gives an ordinary differential equation for g(t). But in con- 
t,rast to equation (7)  for $(y), this one is soluble by inspection, giving (with 
arbitrary constant of integration 0) 

w1 = Gexp{Z’kx+i(Z-akt) y - ~ t [ k ~ + $ I ~ + Q ( k a t - $ Z ) ~ ] } .  (10) 

This solution was first obtained by Kelvin (Thomson 1877). A related separation 
of variables has been used more recently by Goldreich & Lynden-Bell (1  965) in 
treating differential rotation in a gaseous disk. The modes (10) with different 
k’s and 1’s are manifestly a complete set of solutions, because at time t = 0 they 
reduce to w1 cc exp ( ikx + i ly) ,  a complete set of spatial Fourier components which 
can represent any initial vorticity perturbation. 

One sees already in (10) that stability is likely, since at late times 

w1 cc exp ( - ia2uk2t”). 

We pursue this point in the next section. For reference let us give here the stream 
function and perturbed velocities which correspond to the vorticity mode of ( 10): 

+ 2 ( x ,  Y ,  t ) ,  - w1 
y1 = k2 + ( I  - 

- iw ,  (I - akt )  ‘, = k2 + ( I  - akt)2 
a 

ay 
+--(x,Y,t), 

where 9 is any function with V 2 9  = 0. The terms in 2’ arise from the incom- 
pressible potential flow that may always be added to a solution of the vorticity 
equation. If the perturbation velocity is required to be regular a t  all spatial 
infinity, then we must have 9 = 0. 
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3. Stability of the unbounded flow: Green’s functions 
Since every spatial Fourier component of an initial disturbance dies out as 

exp ( - constant x t3)  at late times, an arbitrary perturbation will die with time in 
some mean-square sense. To prove linearized stability we need more than this 
(and at this point we diverge from Kelvin’s treatment): we must show that the 
velocity goes uniformly to zero at all points in space, and moreover is bounded in 
magnitude at all finite times. These stronger conditions will exclude the possi- 
bility (otherwise left open) of the different Fourier components interfering con- 
structively to produce anomalous points where the velocity might not go to 
zero, and might even become singular (vitiating the assumption of linearized 

The first step is to convert the perturbation modes of (10) into Green’s func- 
tions. A straightforward Fourier transform of (10) gives the following result: 
vorticity whose value at t = 0 is &(x - xo) &(y - yo) has the complete time develop- 
ment 

flow). 

1 
4nvt 

w1 (x, y, t )  = - ( 1 + +za2t2) -6  

. (14) 
- (x - xo - ago t ) 2  + (x - xo - ay0 t )  (y - yo) at - (y - yo)2( 1 + ia2t2) 

4Vt( 1 +&a2t2) 
x exp 

One sees that this vorticity has the familiar form of a spreading Gaussian packet, 
as in a diffusion process, but modified by (i) a shearing of shape in the x, y plane 
and (ii) new time-dependent terms on a 2 t 2 .  Viewed from a co-ordinate system 
(x’, y’) whose centre is the comoving fluid point (x, y) = (xo + ay, t ,  yo) and which 
is rotated by an angle B = 4 arctan (3 /o t )  with respect to the x, y co-ordinates, 
(14) takes the form 

where 
w1(x‘,y’,t) = h ( t ) e x p ( - p ( t ) [ x f 2 + ( 1 - e 2 ) y f 2 ] ) ,  (15) 

h(t)  = (47~t ) - l ( l  ++-V2t2)-$, (16) 

(17) p ( t )  = & ( v t + ~ ~ 2 ~ t 3 ) - 2 [ 2 + Q ~ ~ t ~ + ( 3 + 5 a ~ S ~ )  (1 +9/a2t2)-*], 

The functions h(t), p ( t )  and e ( t )  are all monotonic functions of time. 

vorticity field o1 (x’, y‘, t )  in (15), namely 
The second step is to consider the perturbed velocity field derived from the 

We now want to find bounds on V , ,  and V , ,  without evaluating the integrals (19) 
and (20), which are not elementary. To do this, introduce a ‘trial’ vorticity field 
wT,  given by 

wT(x’ , y ’ , t )  = h(t)exp[-p(t)xf2]. (21) 
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Equation (19) with W ,  substituted for w1 yields 

v,, (2’ y‘ t )  = f [7r/p(t)]+ h(t)  {erfc [ -p( t )+~’]  - erfc [p(t)iz’]}, (22) 

which is bounded by 
I VTy, (x’, y’, t ) [  6 *n*h(t)/p(t)*. (23) 

The relation between V,, [bounded according to (23)] and V , ,  (our perturbation 
velocity) is now demonstrated. From ( 1  9)  and (15), some algebra gives 

x exp [ - p ( ~ ’ ~  + t2)] sinh (2pz’t). (24) 

This integral is positive (negative) definite for x’ > 0 (x‘ < 0) ,  SO Kv  > 0 (KY < 0 )  
for x’ > 0 (x‘ < 0). Now we also can find the sign of V T ,  - &: 

v,, (x‘ Y’, t )  - Kv, (x’, Y’, t )  

x exp [ -p  (cz + 55’71 sinh (2p5z’). (25) 

Again the integral is positive (negative) definite for x’ > 0 (d < 0). This proves 
[using (23)]  that 

IT&,,\ 6 I VTv, I Q +.rr+h/pi. (26) 

Now for the other component V, , ,  one performs exactly the same analysis 
(22)-(26) but starting with a different wT, 

Combining (27), (28) and 0 < 1 -e2 < 1, we have our uniform bound for the 
perturbation velocity: 

Recalling that this velocity field came originally from a delta-function vorticity 
perturbation [see (14)] ,  we are now able to state our most general theorem for 
spatially unbounded plane Couette flow. 

THEOREM. If at a time t = 0 a velocity perturbation is confined to a bounded 
spatial region, and if the first spatial derivatives of the velocity perturbation are 
bounded, then in its subsequent evolution the velocity perturbation is uniformly 
bounded over all space, and goes to zero in time uniformly, a t  least as constant 

Proof. The initial vorticity distribution is also bounded in amplitude and space, 

In  short, plane Couette flow without walls is admirably stable. 

x (vt)-&. 

so the vorticity Green’s function is immediately applicable and (29) applies. 

34 F L M  79 
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4. Stability of wall-bounded Couette flow 
We consider now the effect of inserting bounding walls at y = h, comoving 

with the unperturbed fluid at  velocities Y ,  = 2 rh, V,  = = 0. The walls impose 
the new boundary conditions V,, = V,, = 0 a t  y = k h, for all x and t .  The Green’s 
function of (14) is not, therefore, a solution to the vorticity equationplus boundary 
conditions, even though it is a solution everywhere in the interior region - h < y 
< h. To satisfy the boundary conditions we are free, however, to add new, fic- 
titious sources of vorticity anywhere except in the interior region. These are the 
analogue of the familiar ‘image ’ sources in electromagnetism which allow free- 
space Green’s functions to be used in the presence of some conducting surfaces. In  
the present problem, the image sources of vorticity may be restricted to lie 
exactly on the walls y = + h, aswenow show. Withoutlossof generalitywe Fourier 
analyse all quantities in the x direction and take their x dependence as exp ikx. 
At some instant of time t = t’ the perturbation velocity field will be a sum of the 
Green’s functions of the initial (t = 0) perturbation and the Green’s functions of 
previous image vorticity on the walls, i.e. for all t < t’. We want to show that 
whatever velocity these produce at  y = h can now be exactly cancelled by a 
suitable choice of image vorticity at  t = t’, y = k h. Let the velocity to be can- 
celled by vaeikx, and let the image vorticity at  t = t’ be 

oi (z, y) = [C, S(y - h) + C, S(y + h)]eikx. (30) 

This vorticity produces a velocity (still a t  time t’) 

u i  (x, h) = - - - e i k z  ’ 1’1 (c, + c, e-2lLlkl 1, (31a) 

(31b) 

(31c) 

2 k  

vi (z, - h) = - !l“I ezkx(Ql e--2hikl+ c2), 
2 k  

v:(x,h) = V i ( X ,  -h)  = 0. 

There can also be superposed a velocity due to potential flow [see (12) and (13)], 
since we do not require that the solution be regular as y -+ co (outside t,he walls). 
The most general potential 9 with eikx dependence is 

9 = e ikx (G3  ek* + C4 e -kg) .  

From (12), (13), (31) and (32) the boundary condition 
system of equations for Cl, C,, G3 and C4, namely 

0 0 

0 0 

l lkl - le-21klh ekh  e-kh 4Ikl-l 2 

+lkl-le-ZIklh i l k l - 1  e-kh ekh 

(32) 

is now seen to be a linear 

It is readily shown that the matrix in (33) is never singular for any finite h, so 
there is always a unique solution to (33). We have thus shown that the general 
time-dependent solution for a perturbation of wall-bounded Couette flow is 
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given by (i) the Green’s function development (14) of the initial disturbance plus 
(ii) the Green’s function development of a uniquely determined [by (33)] vorticity 
source a t  the walls plus (iii) a uniquely determined [by (33)] potential flow which 
varies with time. 

We turn now to the question of stability. Can an initial velocity (hence vor- 
ticity) perturbation give rise to a solution which grows with time at late times? 
Let the vorticity perturbation eikx8(y- y“ )  be introduced at time t”;  since k and 
y” are arbitrary, this perturbation is representative of a complete set of pertur- 
bations. The Green’s function for this source a t  all times t > t” is [by a Fourier 
transformation in z of (14) or in y of ( lo)] 

Gk (z, y, t ,  y”, t ” )  = + [ m ( t  - t”)]-& exp [ikx - (y - y”)2/4v(t - t ” )  - & rr2kzv 

x ( t - t t ” ) 3 - ~ k 2 ( t - t N ) - + i ( ~ + ~ ” ) ~ k ( t - t ” ) ] .  (34) 

Notice that at  late times this decays as exp ( - constant x t 3 ) .  However, we know 
that image vorticity is created at  the walls to satisfy the boundary conditions. 
Any given image source decays with time as in (34), but while it is decaying it 
induces new image vorticity in the walls. The creation of image vorticity is thus a 
continuous process, and the flow will be unstable only if this creation occurs 
‘faster’ than the decay of vorticity. As Orr pointed out, Kelvin seems to have 
erred principally on this point: since G [or w, in (lo)] decays with time, Kelvin 
imagined without justification that the response of the walls must also decay in 
time, and he thus felt justified in Fourier transforming the response of the wall 
using real frequencies only. But this is tantamount to assuming the stability that 
he finally claims to prove ! We avoid this pitfall. To represent this quantitatively, 
let the image vorticity source a t  y = 5 h be Fl ( t )  eikx S(y - h) + F! ( t )  eikxS(y +h) ,  
and let the potential flow (also required by boundary conditions) be generated 
from the potential 

9 = eiks[F3 ( t )  sinh ( k y )  +F4 ( t )  cosh ( k y ) ] .  (35) 

The total vorticity at time t due to all previous image sources is 

where G,  is the Green’s function in (34). A tedious but straightforward calculation 
gives the velocity field vi which corresponds to this vorticity field: 

(37) 
d (x, y ,  t )  = eikZ[Q (Fl, t ,  y, a) + ux (4, t ,  y ,  -a)], 

v; (X, Y ,  t )  = eikX[U, (Fl, t ,  Y ,  a) + u, ( F 2 ’ 4  Y ,  -a113 

where 

34-2 
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Here we have introduced the dimensionless constants 

R 3 rrh2/v (Reynoldsnumber) (40) 

and a = J k J  h. The upper (lower) signs in (38) and (39) refer to k > 0 (k < 0). If 
V a ( y ,  t )  eikz is the velocity perturbation whose vorticity is (34), then the four 
equations which impose the wall boundary conditions are 

U, (Fl, t ,  a, a )  + U, (F2, t ,  a, -a) + k(F3 cosh a + F4 sinh a) = - Va, (h,  t ) ,  
(41) 

U, (PI, t ,  -a, a)  + U, (F!, t ,  -a,  -a) + k(F3 cosh a T F4 sinh a) = - Va, ( - h, t ) ,  
(42) 

U, (Fl, t ,  a, a )  + U, (F!, t ,  a,  -a) - ik( + F3 sinh a + F4 cosh a) = - Va, (h, t ) ,  
(43) 

U,(Fl,t, -a,a) +Uy(F2,t, -a, -a) -ik(TF3sinha+F4cosha) = Va,(-h,t). 
(44) 

Now we come to an important physical point. If there is an instability in the flow, 
then the individual terms on the left-hand sides of (41)-(44) should be growing 
in time. However, the terms on theright-hand sides represent the Green’s function 
of the original perturbation, which decays exponentially in time. So a t  very late 
times the right-hand sides are negligibly small; for apure growing mode (one which 
has been growing for all time), the right-hand sides must be effectively zero. But 
in this case the left-hand sides do not depend explicitly on t at all, except through 
the arguments of the e, which enter linearly. Therefore, at this stage we can 
recognize that the linear operator which acts on the 4 is invariant under time 
translation, and that we should adopt the ansatz 

2$ ( t )  = Ci eM (i = 1 , 2 , 3 , 4 ) ,  (45) 

i.e. we can just look for exponentially growing modes with Re h >/ 0. We could 
not do this before setting the right-hand sides to zero, because the Green’s function 
for the initial disturbance is not a simple exponential in time. The point is that, 
with a growing mode, the time of the initial disturbance can be pulled back to 
negative infinity, i.e. t” -+ - 00. The physical nature of any instability must then 
be a ‘resonance’ in vorticity production on the two walls, and this problem (with 
t now an ignorable co-ordinate) should have exponential solutions. 

Does such a resonance exist? In  other words, do any values of h such that 
Re h 0 satisfy (41)-(45) for some complex constants Ci (i = 1, . . . , 4 )  and with the 
right-hand sides of (41)-(44) zero? The equations are linear and homogeneous in 
the Ci. It is straightforward to eliminate C, and C4 from the equations, and obtain 
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two equations for C, and C,. After some manipulation, one is led to define two 
transcendental functions in terms of Laplace transforms of exponential and 
complementary error functions of complicated arguments : 

= 

R223 iRz2) 
erfc (iz23 - + z t  ) dx, 

Pl(A,R,a) = e-*zexp I: ( 3a4 a 

P, (A,  R, a)  = e-2aa dz. (47) 

tanha[P,(A,R,a) +P2(A, R,a)] tanha[Pl(A, R, -a) +P2(A, R, -a)] 

- [PI (A ,  R, a) -P, (4 3, a11 

(A", R, -a)] - [P,* (A*, R, -a) 

-P,*(A*,R, -a)] 

+[Pi(A,R, -a) -Pz(A,R, -a)] 

(A*, R, 4 1  + [P,* (A", R, a) 
- P2* (A*, R, 41 

- tanha[<*(A, R, -a) +P,* - tanh a[P,* (A*, R, a) + P,* * (48) 

5. Discussion 
We have seen that unbounded plane Couette flow is stable to small disturbances, 

and that the unstable modes of wall-bounded plane Couette flow (if they exist) 
have eigenfrequencies which are solutions to the transcendental equation (48). 
These growing modes must also be eigensolutions of the Orr-Sommerfeld equa- 
tion (7),  which is a fourth-order differential equation with two-point boundary 
conditions, but we have completely circumvented that equation in the treatment 
here. Indeed, the only ordinary differential equation which appeared here was of 
first order in time, and soluble by inspection [giving (lo)]. 

Of course, the functions which appear in (48) are not elementary. One might 
ask, why not simply de$ne four functions to be the independent solutions of the 
Orr-Sommerfeld equation and thus reduce the standard approach to a formally 
'algebraic' problem? The formal difference between this and our treatment is 
that the functions in (48) are given as new, explicit integrals [see (46) and (47)]. 
For the Orr-Sommerfeld equation, (5) can be solved in terms of Airy functions 
(Orr 1907), so a formal solution to (7) in terms of integrals of these is possible; but 
this approach does not seem to have been fruitful. The integrals of this paper look 
to be quite tractable for numerical evaluation: focusing interest on the onset of 
possible instability, one would search for purely imaginary roots A, so the Laplace 
transforms could be evaluated by fast Fourier transform techniques. The 
functions inside the integral could also be evaluated efficiently; for example, 

= 

tanha[P,(h,R,a) +P2(A,R,a)] tanha[P,(A,R, -a) +Pz(h,R, -a)] 

- [PI (A ,  R, a) -P2 (4 3 ,  a11 

(A", R, -a)] - [P,* (A*,  R, -a) 

-P,*(A*,R, -a)] 

+[Pj.(h,R, -a) -Pz(h,R, -a)] 

(A*, R, 4 1  + [P,* (A", R, 4 
- P2* (A*, R, 4 1  

- tanha[<*(h, R, -a) +P,* - tanh a[P,* (A*, R, a) + P,* * (48) 

In  terms of these functions, the condition that solutions for C, and C, exist takes 
the form of a remarkably simple 2 x 2 determinant equation: 

Here an asterisk signifies complex conjugation. Equation (48) is a transcendental 
equation in R (Reynolds number), a (dimensionless wavenumber) and h (a com- 
plex frequency). For fixed R and a, it is a transcendental equation for A; any 
instability of the flow will appear as a root with Re h > 0. 
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Abramowitz & Stegun (1970, p. 328) give concise approximations for erfc for 
arbitrary complex arguments. We have not, however, pursued these numerical 
questions. On the analytio side, one might hope that an analytic proof of stability 
could come from the study of the functions (46) and (47) in the complex plane. 

Some of the results of this paper generalize to perturbations of any viscous 
shear flow whose unperturbed velocities are linear functions of the co-ordinates. 
The translational symmetry in Lagrangian co-ordinates provides the opening 
wedge in these cases, as in plane Couette flow. 

Our work on this subject has benefited from discussions of a general nature 
with S. Chandrasekhar and A. Toomre. We thank C. C. Lin for comments on the 
manuscript. W.H.P. thanks the Institute of Astronomy, University of Cambridge 
for its hospitality during the early stages of this work. We thank the U.S. National 
Science Foundation for partial support under grants GP30799X and PHY 
76-14852. 
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